				cυ	R	т	Ω	А	Ч	G	0	R	I T	ы	М	S
	Addition / Subtraction															
		C		Divisio	n											
a	Addition of whole numbers															
b	Addition of numbers with decimal places	a	D	ivision - ad	ditive	meth	od - 1									
С	Addition of whole numbers when the number to be set exceeds the capacity of SR.	b	D	ivision - ad	ditive	meth	od - 10	a								
d	Subtraction with positive remainder with counting the numder of terms subtracted	С	D	ivision - ad	ditive	meth	od - 2									
е	Subtraction with negative remainder - 1	d	D	ivision - Su	ıbtracti	ve m	ethod.	(Usefi	ul whe	en a	result	alrec	ıdy exi	sts in	RR)	
f	Subtraction with negative remainder - 2	е	S	uccessive	divisio	n. (To	o get a	result	in RR	2)						
1		1														
В	Multiplication	D		Rule o	f thre	е										
a	Basic multiplication	a	R	ule of thre	e -] st	meth	od									
b	Multiplication with constant factor	b	R	Rule of three - 2 nd method												
С	Shortened method of multiplication - 1	С	R	ule of thre	e - 3rd	meth	nod - Si	multa	neous	calc	culatic	on				
d	Shortened method of multiplication - 1	d	R	ule of thre	e with	com	plemer	ntary c	divisio	on - Ty	ype II					
е	Shortened method of multiplication - 1	е	E>	ktended rul	e of th	nree										
f	Multiplication with multiplicand already in CR															

																			С	U	R	т	А		А	L	G	0	R	ı I	т	м	e
2		Roo	ots																														
а	Squ	are	root	- ~	ithout	t initi	al ap	opro>	kimc	ation -	Töpler':	s me	ethod 1 ·	- Тур	e II																		
b	Squ	are	root	- W	ithout	t initi	al ap	oprox	kimc	ation -	Töpler':	s me	ethod 2				3		Ser	rial	calc	ula	tion	S									T
С	Squ	are	root	- w	ithout	t initi	al ap	oprox	kimc	ation -	Töpler':	s me	ethod 3																				
d	Squ	are	root	- w	ithout	t initi	al ap	oprox	kimc	ation -	Friden	style	e 1				а	Continued multiplication 1 - with optical control															
е	Squ	are	root	- w	ithout	t initi	al ap	oprox	kimc	ation -	Friden	style	e 2 - Typ	e II			b	Continued multiplication 2															
f	Squ	are	root	- H	erma	nn's	meth	nod									С	Powers calculation in series															
g	Squ	are	root	- H	erma	nn's	reve	rse m	netho	bc							d	Acc	cumu	latio	on of	quo	otient	s]									
h	Squ	are	root	- Sc	abielr	ny's r	neth	od 1									е	Acc	cumu	latio	on of	quo	otient	s 2									
i	Squ	are	root	- Sc	abielr	ny's r	neth	od 2	2								f	Tra	nsfei	r mu	ltipli	catic	on										
i	Squ	are	root	- cl	assico	al me	ethoo	k									g	Eva	luat	ion	of se	ries											
k	Cub	e ro	ot																														1
	n ro	ot																															
																																	+
																																	-
									-																								-

4	Geometry											
a	Calculation of area from co-ordinates (shoelace method)											
b	Sides of a triangle - Pythagoras theorem	6	6 Number games									
С	Distance between two points - Pythagoras theorem											
d	Calculation of co-ordinates	а	Collatz conjecture (Syracuse problem) (3x+1 algorithm)									
e	Determination of a side of an obtuse - angled triangle	b	The golden ratio with Fibonacci sequence									
		С	c Multiplication by the Vedic method									
		d	d Converting a decimal number to binary									
		е	e Converting a binary number to decimal									
Ρ	Statistics											
a	Calculation of a sum and a sum of squares - Type II											
b	Calculation with the '9' bridge - Type II											
С	Serial Percentages with simultaneous control - Type II											
d	Computation of arithmetic mean and standart deviation											

Thanks to Sean Johnston for the Curta font and to Richard E. Deutsch / <u>curta.li</u> for his support The cards are designed to be perforated in the upper part (length) and placed in a binder

Cut Let ³ By r d ₁ =	be root - Type II $^{1}\sqrt{N}$ be determined. Let us assume that we already have a neglecting the terms in d^2 and d^3 , we obtain an approxima $(N - A^2) + 3A^2$, $R = A + d_1 = A + (N - A^3) + 3A^2$ (The	n approximation A. Let $\sqrt[3]{N} =$ tion d1 for d and consequently e error is practically d1 ² ÷ A)				
	N = 560, A = 8.24, ³ √560 = ?	Setting	Carriage/Inverter	Turns	Counter	Product
	$^{3}\sqrt{N} = A + (N - A^{3}) \div 3A^{2}$	Clear	t		Clear	Clear
1	Set the initial approximation A = 8.24 Calculate A ² : Develop A in CR	824 11 10 9 8 7 6 5 4 3•2 1	8 7 6 5 4 <mark>3 < 1</mark>	14 +	8,2 4	678970
2	Set A ²	6 7 8 9 7 6	3		8 2 4	67897
3					Clear	Clear
4	Calculate 3A ² .Develop 3 in CR. In PR, we obtain 3A ² Note this number	6 7 8 9 7 6 11 10 9 8 7 6 5 4 3 2 1	8 7 6 5 4 3 2 1	3 +	3	2 0 3 6 9 2 8 15 14 13 12 11 10 9 8 7 ▲ 5 4 3 2
5	Calculate A ³ Develop A in CR. A ³ in PR	6 7 8 9 7 6 11 10 9 8 7 6 5 4 3 2 1	8 7 6 > 4 3 2 1	7 +	8,24	5 5 9,4 7 6 2 2 4 15 14 13 12 11 10 9 8 7 6 5 3 3 2
	Set 3A ²	2 0 3.6 9 2 8	8 7 6 5 4 3 2 1	+	8,2 5	5 6 1 5 1 3 1 5 2 15 14 13 12 11 10 9 8 7 6 5 • 3 2
6	Calculate $A_1 = A + (N - A^3) \div 3A^2$	2 0 3 6 9 2 8	4	-	824	5 5 9 4 7 6 2 2 4
	Develop PR as close as possible to N	2 0 3 6 9 2 8	3	2 +	8 2 4 2	5 5 9 8 8 3 6 0 9 6
		2 0 3 6 9 2 8	2	5 +	8 2 4 2 5	5 5 9 9 8 5 4 5 6
7	Result: 8.24257	2036928	1	7 +	8.2 4 2 5 7	5 5 9 9 9 7 1 4 4 9 0